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Abstract

Formal and social epistemologists have devoted significant attention to the question of how to aggre-

gate the credences of a group of agents who disagree about the probabilities of events. Most of this work

focuses on strategies for calculating the mean credence function of the group. In particular, Pettigrew

(2019) argues that group credences should be calculated by taking a linear mean of the credences of

each individual in the group, on the grounds that this method leads to more accurate group credences

than all other methods. In this paper, I argue that if the epistemic value of a credence function is

determined solely by its accuracy, then we should not generate group credences by finding the mean of

the credences of the individuals in a group. Rather, where possible, we should aggregate the underlying

statistical models that individuals use to generate their credence function, using “stacking” techniques

from statistics and machine learning first developed by Wolpert (1992). My argument draws on a result

by Le and Clarke (2017) that shows the power of stacking techniques to generate predictively accurate

aggregations of statistical models, even when all models being aggregated are highly inaccurate.

1 Introduction

Suppose that Alphonse and Belinda are rushing to catch a train from Brussels to Amsterdam, and do not

have time to check the timetable. Alphonse’s credence that the train leaves before noon is .7, while Belinda’s

credence that the train leaves before noon is .3. As a couple, what is their credence that the train leaves

before noon? Formal epistemologists have devoted considerable attention to this type of question, with

Russell et al. (2015) producing an impossibility result showing that no aggregation rule can satisfy a set

of prima facie desirable conditions, before showing that a geometric averaging rule can uniquely satisfy

a subset of these desiderata. Most importantly, it is shown that geometric averaging rules allow for group

credences to commute with conditionalization: if each individual in a group updates on the same information,
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and then takes a geometric mean of their posterior credences, their group credence will be the same as it

would be if they had first taken the geometric mean of their prior credences, and then updated their group

credence on the same information. Linear methods for credal averaging do not allow for such consistency of

conditionalization between individuals and the groups that they comprise, a feature of linear averaging also

highlighted by Wagner (1985), Bradley (2007), Jehle and Fitelson (2009), Steele (2012), and Staffel (2015).

By contrast, Pettigrew (2019) argues for the alternative thesis that linear averaging is the superior method

for aggregating group credences, on the grounds that for any group credence Cr′ that is not a linear mean of

each individual’s credence, there is always a linear mean Cr∗ of the same credences such that each member

of the group expects Cr∗ to have greater accuracy than Cr′. This thesis is defended in spite of the problems

with conditionalization discussed above.

My aim in this paper is not to weigh in on either side of the debate between those who believe that

group credences should be generated via geometric averaging of individual credences and those who believe

that group credences should be generated via linear averaging of individual credences. Simply put, I argue

that both camps are in the wrong, at least in so far as they aim to provide general normative guidelines

for generating group credences. My argument for this claim proceeds as follows. Like Pettigrew (2019),

I hold that when devising a method to generate group credences, we ought to favor methods that allow

the group to be as accurate as possible, at least insofar as we care about the epistemic value of the group

credences. However, I show that there are cases in which no averaging method can produce very accurate

group credences. Informally, these are cases in which all individuals in a group assign credences to events

based on inaccurate models of the relevant data. One might think that in such cases, no method of arriving

at group credences can be expected to be accurate, but recent work on model stacking by Le and Clarke

(2017) shows that this is not the case. Although Le and Clarke do not specifically discuss the aggregation of

credences, I apply their techniques to show how, even when all members of a group use inaccurate models

to assign credences to events, the group can use stacking techniques to arrive at credences that are more

accurate than those that would be generated by any averaging method.

Here is the plan for this paper. In Section 2, I provide the formal background needed to make my

argument. In Section 3, I demonstrate that when all individuals in a group have inaccurate models of a

shared data set, neither geometric nor linear averaging of credences produces accurate group credences.

In Section 4, I show how stacking techniques allow for a group to generate more accurate credences by

aggregating the statistical models from which each individual derives their credences, even when each of

these models is individually highly inaccurate. I therefore conclude that group credences should, where

possible, be generated by stacking individuals’ models rather than averaging each individuals’ credences. In

Section 5, I address Pettigrew’s unanimity condition on credal aggregation, which is central to his argument
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that groups that care only about being accurate should pool their credences via linear averaging. I argue

that there is no purely accuracy-based reason to accept unanimity as a constraint on credal aggregation

methods. In Section 6, I respond to possible counterarguments to my proposal; in so doing, I highlight the

value of asking individuals for reasons behind their partial beliefs when attempting to determine a group

credence. In Section 7, I offer concluding remarks.

2 Formal Preliminaries

2.1 Group Credences as Means

Throughout this paper, I will represent the problem of determining group credences from individual credences

as follows. A group of individuals I = {1, 2, . . . , N} share a common sample space Ω, or set of possible worlds,

and share a common algebra AΩ on Ω, i.e. a set of a subsets of Ω that is closed under complement, union, and

intersection. Each individual i ∈ I has their own credence function Cri : AΩ → [0, 1] that obeys the standard

Kolmogorov axioms. Thus, each individual has their own credal probability space Cri = (Ω,AΩ, Cri). For a

sample space Ω, an algebra AΩ, a set of individuals I, and a partition F of Ω such that F ⊂ AΩ, the group

credence problem (Ω,AΩ, I,F) is to find a single credence function Cr∗ that represents the credence of the

entire group I in each element of F .

To illustrate using the example above, we begin with set of two individuals IAB = {Alphonse,Belinda},

each of which shares a sample space Ω and a set of possible worlds AΩ. We define a partition Z = {Z,¬Z},

where Z is the set of worlds in Ω in which the train from Brussels to Amsterdam leaves before noon, and

¬Z is its complement in Ω, i.e. the set of worlds in which the train leaves at noon or later. We know that

Alphonse’s credence function CrA is such that CrA(Z) = .7 and CrA(¬Z) = .3, and Belinda’s credence

function CrB is such that CrB(Z) = .3 and CrB(¬Z) = .7. The problem of finding Alphonse and Belinda’s

group credence in each element of the partition {Z,¬Z} is represented as (Ω,AΩ, IAB ,Z).

In formal epistemology, it is typically assumed that the solution to the group credence problem is to

calculate a mean credence for each element of the relevant partition. For any element F of a partition F of

the relevant sample space and any set of credences {Cr1(F ), . . . , CrN (F )}, a mean µ({Cr1(F ), . . . , CrN (F )})

of those credences satisfies the following two individually necessary and jointly sufficient conditions:

Homogeniety: µ({tCr1(F ), . . . , tCrN (F )}) = tαµ({Cr1(F ), . . . , CrN (F )}), for any t ∈ R and

some α ∈ R.

Min-Max: min{Cr1(F ), . . . , CrN (F )} ≤ µ({Cr1(F ), . . . , CrN (F )}) ≤ max{Cr1(F ), . . . , CrN (F )}.
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The two primary types of means considered in the formal epistemology literature on group credences are the

linear and geometric means. They are defined as follows:

Linear Mean: µL({Cr1(F ), . . . , CrN (F )}) =
∑v
i=1 wiCri(F ), where {w1, . . . , wN} is a set of

non-negative, individual-specific weights such that
∑v
i=1 wi = 1.

Geometric Mean: µG({Cr1(F ), . . . , CrN (F )}) = k
√∏v

i=1 Cri(F )wi , where {w1, . . . , wN} is a

set of non-negative, individual-specific weights such that
∑v
i=1 wi = k.

For a set of individuals I and a partition F of their shared sample space, if a group credence function

Cr∗ is such that for each F ∈ F , Cr∗(F ) = µL({Cr1(F ), . . . , CrN (F )}), then Cr∗ necessarily obeys the

Kolmogorov axioms, provided that the same set of individual-specific weights {w1, w2, . . . , wN} is used to

calculate each group credence Cr∗(F ). Similarly, if a group credence function Cr∗ is such that for each F ∈ F ,

Cr∗(F ) = µG({Cr1(F ), . . . , CrN (F )}), then Cr∗ necessarily obeys the Kolmogorov axioms, provided that

the same set of individual-specific weights {w1, w2, . . . , wN} is used to calculate each group credence Cr∗(F )

and that there is an event F ∈ F that has non-zero probability according to each individual’s credence

function (Dietrich, 2019).

As mentioned in the introduction, my goal in this paper is not to adjudicate between which of these two

means provides the better mechanism for credal aggregation. Rather, my focus will be on what these two

means have in common, with a particular focus on the Min-Max condition that both means satisfy. In what

follows, I will argue that the Min-Max condition constrains the possible accuracy of a group credence in

cases where all members of the group have highly inaccurate credences. I will show that this is not the case

for stacking-based methods of determining group credences.

2.2 Inaccuracy

My argument depends on our ability to make comparisons between group credence functions produced by

different methods with respect to their (in)accuracy. Thus, I will need to introduce the formal notion of an

inaccuracy measure. Generally, an inaccuracy measure I is a real-valued function that takes as its arguments

a credence function Cr, a partition F of the sample space Ω, where Cr is defined over an algebra AΩ on Ω,

and an event F † ∈ F . We interpret F † as the element of the partition F that contains the actual world.

The higher the value of I(Cr,F , F †), the more inaccurate Cr is with respect to the probabilities that it

assigns to the elements of F . The two inaccuracy measures discussed most in formal epistemology are the

Brier measure and the logarithmic measure. Let F = {F1, . . . , Fm} and let T : F → {0, 1} be a truth value

function such that T (Fj) = 1 if Fj = F †, and T (Fj) = 0 otherwise. The Brier measure and logarithmic

measure are defined as follows:
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Brier Measure: IB(Cr,F , F †) = 1
m

∑m
j=1(Cr(Fj)− T (Fj))2

Logarithmic Measure: IL(Cr,F , F †) = − ln(Cr(F †))

Although there are formal differences between the two scores, these differences are not directly relevant to

my argument. As such, I will use both measures when assessing the accuracy of any given group credence.

In addition to measuring the accuracy of a credence function when the actual world is in a particular

element of a partition F , we can also calculate the expected inaccuracy of any credence function Cr, where

the expectation is calculated according to some probability distribution P that is defined over the same

algebra AΩ and sample space Ω as Cr. This expectation is defined via the following equation:

Expected Inaccuracy: EP (I(Cr,F , ·)) =
∑m
j=1 P (Fj)I(Cr,F , Fj).

This definition assumes that we interpret a probability P (Fj) as expressing the probability that Fj contains

the actual world. Note that we use a placeholder instead of F † when calculating expected inaccuracy because

calculating an expected accuracy assumes that we do not know which element of F contains the actual world.

Since expected inaccuracy is itself a linear mean of inaccuracy measures, it satisfies the Min-Max condition

defined above.

3 When a Mean is Not Accurate

To show how assigning group credences using a mean can result in highly inaccurate group credences, consider

the following case. Turning to a new example, let us suppose that Alphonse and Belinda are each reading

reports showing the number of lynx and the number of hares in a given area of forest on a given day. Let

us represent each day’s report as a pair (l, h), where l is the number of lynx and h is the number of hares.

The first four days produce a data set D of reports such that D = {(1, 5), (2, 11), (3, 17), (4, 20)}. Alphonse

and Belinda are then told that on the fifth day of observation, there were five lynx in the area, but that the

number of hares could not be measured. They are asked to assign a credence to the event that the number

of observed hares was less than 10, and to the event that the number of observed hares was greater than

or equal to 10. Each reasons by constructing their own signal-noise model of the the data. Their respective

models are defined as follows, where the noise term ε is normally distributed around zero with a standard

deviation of σ = 4:

MA : h = 2l + ε (1)

MB : h = 3l + ε (2)
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Thus, when l = 5, Alphonse and Belinda’s estimates of the number of hares in the area will be normally

distributed, with a standard deviation of σ = 4, around the mean of 2(5) = 10 and 3(5) = 15, respectively.

Alphonse and Belinda share a sample space Ω that contains the positive integers, representing the number

of hares observed on the fifth day. Their credence functions are defined over an algebra AΩ, which we take

to be the power set of Ω. We partition Ω into the set H = {H<10, H≥10}, where H<10 is the set of worlds in

which there are less than 10 hares in the area and H≥10 is the set of worlds in which there are 10 or more

hares in the area. In keeping with the models specified above, Alphonse and Belinda’s credences in each of

the two events in this partition can be calculated as follows:1

CrA(H<10) =
∫ 10

0
exp(− 1

32h
2 + 5

8h− 3.125− ln(32π)
2 )dh ≈ .50 (3)

CrA(H≥10) = 1− CrA(H<10) ≈ .50 (4)

CrB(H<10) =
∫ 10

0
exp(− 1

32h
2 + 15

16h− 7.03125− ln(32π)
2 )dh ≈ .11 (5)

CrB(H≥10) = 1− CrB(H<10) ≈ .89 (6)

Thus, if Alphonse and Belinda’s joint credence function Cr∗ is generated by taking a mean of their individual

credences, then due to the Min-Max constraint on a mean, it must be the case that .11 ≤ Cr∗(H<10) ≤ .50

and .50 ≤ Cr∗(H≥10) ≤ .89.

However, Alphonse and Belinda are both poor data analysts. By stipulation, the true data generating

process is modelled as follows, where ε is also normally distributed around 0 with a standard deviation of

σ = 4:

MT : h = 5l + ε (7)

This means that the true probability distribution PT over H can be calculated as follows:

PT (H<10) =
∫ 10

0
exp(− 1

32h
2 + 25

16h− 19.53125− ln(32π)
2 )dh ≈ 8.8× 10−5 (8)

PT (H≥10) = 1− PT (H<10) ≈ .999912 (9)

Table 1 shows the maximum and minimum expected inaccuracy of Alphonse and Belinda’s group credence
1To briefly explain these calculations, note that the normal distribution f(x) can be expressed as an exponential function

f(x) = exp(ax2 + bx + c) where σ2 = 1/2a, µ = −b/2a and c = b2/4a + ln(−a/π)/2. The probability that f(x) ∈ [y, z] can
calculated by taking the integral

∫ z

y
f(x)dx. It is worth noting that the use of normally-distributed, real-valued error terms

is an idealization, as it allows for non-integer and negative values of hares, although states in which the number of hares is
negative have very low probability according to all of the models considered here.
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Brier Logarithmic
maxEPT

(I(Cr∗,H, ·)) .250 .693
minEPT

(I(Cr∗,H, ·)) .016 .129
EPT

(I(PT ,H, ·)) 8.879923× 10−5 9.10× 10−4

Table 1: Maximum and minimum expected inaccuracy of Alphonse and Belinda’s mean credence under both
scoring rules, as compared to expected inaccuracy of the true probability distribution, according to itself.

Cr∗ according the true probability distribution PT , for both the Brier and logarithmic inaccuracy scores,

under the assumption that their group credence must be a mean of their individual credences. It also shows

the expected inaccuracy of the true probability distribution, according to itself. It should be clear from the

table that even in the best-case scenario, Alphonse and Belinda’s mean credence will be quite inaccurate

compared to the true probability distribution.

One might be tempted to think that this limit on the expected accuracy of Alphonse and Belinda’s joint

credence is an inevitable consequence of their being poor data analysts. If all individuals in a group are in

a poor epistemic state, it could be argued, why should we expect the group as a whole to fare well? In the

next section, I will show how stacking techniques for generating group credences demonstrate that group

inaccuracy is not an inevitable consequence of unanimous individual inaccuracy.

4 How Stacking Leads to More Accurate Group Credences

Let us once again reference the example in the previous section, wherein Alphonse and Belinda’s models of

the observed data are given by MA and MB . We want to generate a “stacked” model MS which we hope will

yield more accurate credences than either of the individual models. Our strategy will be to come up with

a vector of stacking weights ~w = {w1,w2} such that the group will make predictions using the following

stacked model:

MS : h = w12l + w23l + ε (10)

Note that ε is once again an error term normally distributed around zero with a standard deviation of σ = 4.

Importantly, these weights are not required to sum to one; see Clyde (2012) for a simple demonstration of

cases where the sum-to-one constraint limits the accuracy of a stacked model. Thus, there is a large space

of weights to choose from, and we will need to choose carefully in order to arrive at a model that generates

more accurate credences than any mean.

In order to do this, we will need to add an additional piece to both Alphonse and Belinda’s modeling

repertoire. Let D be the set of all possible data sets D = {(x1, y1), . . . , (xv, yv)} that an agent might observe,
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and let Li : D →M be a given individual i’s learning algorithm, whereM is the set of all possible signal-noise

models of the form f(x) + ε. Individuals use their learning algorithm to build models of the data-generating

process from any given data set. Let D−α denote the data set D\{(xα, yα)}, i.e. the data set D with the α-th

data point removed. For any data set D, individual i, and data point (xα, yα), let Li(D−α) = f−αD,i(x) + ε.

For any individual i and data set D = {(x1, y1), . . . , (xv, yv)}, their leave-α-out vector ~zi is defined as follows:

~zi = [f−1
D,i(x1), . . . , f−vD,i(xv)]T.

Le and Clarke (2017, p. 817) prove that, with respect to the goal of accurately predicting the value of

yn+1, given the value of xn+1, the optimal stacking weight vector ~w for for N individuals and data set

D = {(x1, y1), . . . , (xv, yv)} can be derived as follows. Let Q be an N ×N matrix such that each entry qkl

is given by the following formula:

qkl =
v∑

α=1
f−αD,k(xα)f−αD,l (xα) (11)

That is, Q is a matrix such that the entry in the k-th row and the l-th column is the dot product of the

leave-α-out vectors for the individuals k and l. Next, let ~c be the following vector:

~c = [
v∑

α=1
yαf

−α
D,1(xα), . . . ,

v∑
i=1

yαf
−α
D,1(xα)]T (12)

In other words, ~c is a vector such that each entry is the dot product of a vector containing the actual value of

y for each entry in the data set, and the leave-α-out vector for each individual in the set. A set of weights that

yield a highly accurate stacking model for the ensemble of models can be found via the following equation:

~w = Q−1~c (13)

Thus, the optimal stacking weights ~w are found by multiplying the inverse of Q by ~c. More precisely, Le

and Clarke prove the following:

Proposition 1 (Le and Clarke 2017). For any data set D = {(x1, y1), . . . , (xv, yv)}, the weight vector ~w

that uniquely minimizes
∑v
α=1(yα −

∑N
i=1 wif

−α
D,i(xα))2 is ~w = Q−1~c.

Thus, a learning algorithm LS that uses the leave-α-out vector produced by each individual’s algorithm

to produce a stacked predictive model with weights ~w = Q−1~c performs optimally well at predicting the

outcome yα when the data point (xα, yα) is left out of the data set, for all such leave-α-out scenarios, where

accurate prediction is measured in terms of the squared difference between the outcome yα and the model

prediction f−αD,i(xi). If the probability distribution P over all possible data sets D = {(x1, y1), . . . , (xv, yv)}
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is such that all finite permutations of any data set have equal probability (i.e., all observation sets are

“exchangeable”) then by the law of large numbers (see Bernardo and Smith, 1994, p. 403-4), the following

also holds:

P( lim
v→∞

1
v

v∑
α=1

(yα −
N∑
i=1

wif
−α
D,i(xα))2 = 0) = 1 (14)

Thus, in the infinite limit, we should expect the learning algorithm LS to yield a more accurate prediction

f
−(n+1)
D,S (xn+1) of the value yn+1, given the data set D = {(x1, y1), . . . , (xv, yv)}, than any other aggregation

of each individual’s models.

Applying this method to our running case study, let us suppose that Alphonse and Belinda’s common

data set is still D = {(1, 5), (2, 11), (3, 17), (4, 20)} and that their leave-α-out vectors are specified as follows:

~zA = [3, 4, 6, 7]T (15)

~zB = [4, 5, 9, 11]T (16)

We use equation (13) above to derive the stacking weight vector ~w = [−3.90, 4.37]T. So the stacked model

has the following form:

MS : h = (−3.90)2l + (4.37)3l + ε = 5.31l + ε (17)

This means that when l = 5, a credence function over possible values of h that is consistent with the stacked

model MS will be derived from a normal distribution around a mean of (5.31)5 = 25.55 with a standard

deviation of σ = 4. If we use the stacked model MS to derive a joint credence for Alphonse and Belinda over

the partition H = {H<10, H≥10}, we obtain the following:

Cr∗S(H<10) =
∫ 10

0
exp(− 1

32h
2 + 25.55

16 h− 22.03− ln(32π)
2 )dh ≈ 1.8× 10−5 (18)

Cr∗S(H≥10) = 1− PT (H<10) ≈ .999982 (19)

The expected inaccuracies of this stacking-derived group credence Cr∗S , with respect to the true probability

distribution PT , for the Brier and logarithmic measures, are given by the following equations:

EPT
(IB(Cr∗S ,H, ·)) = 8.79972× 10−5 (20)
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EPT
(IL(Cr∗S ,H, ·)) = 9.8× 10−4 (21)

Thus, the expected inaccuracy of the stacking-derived joint credence for Alphonse and Belinda, according

to the true probability distribution, with respect to the number of hares in the region when five lynx are

observed, is much lower than the best-case application of any mean-derived joint credences, regardless of

whether the Brier or logarithmic measures are used to measure accuracy. Indeed, when the Brier measure is

used, the expected inaccuracy of the stacking-derived joint credence function according to the true probability

distribution is very close to the expected inaccuracy of the true probability distribution according to itself

(recall that the latter expectation is EPT
(IL(PT ,H, ·)) = 8.79923× 10−5).

As discussed in the introduction, I suppose here that the sole normative expectation for any solution to

the group credence problem is that the solution ought to be as accurate as possible. Under this supposition,

the preceding example shows that it is at least sometimes the case that the group should aggregate its

credences by stacking, rather than credal averaging.

5 Against Unanimity

In the introduction, I mention that Pettigrew (2019) argues in favor of the claim that if the sole goal of

a group of agents is to have as accurate a group credence as possible, then they ought to solve the group

credence problem by linear averaging. However, the results above seem to indicate that this is not the case;

when all members of a group have inaccurate credences based on flawed models, stacking results in more

accurate credences than linear averaging. So what has gone wrong? In this section, I argue that a premise of

Pettigrew’s argument, viz., that group credences must satisfy a unanimity constraint, need not be satisfied

by groups of agents that take accuracy to be only valuable property of their group credence function.

Let us reconstruct Pettigrew’s argument. His first premise is that any measure of inaccuracy must be a

sum of the values of a strictly proper and continuous scoring rule for each element in a partition under a

given probability distribution. A scoring rule is a function s such that, for a given element F of a partition

F and a given credence function Cr, s takes as its input the truth value T (F ) and the credence Cr(F ) and

returns a value s(T (F ), Cr(F )) between zero and one. Recall that T (F ) = 1 if the actual world is in F and

T (F ) = 0 otherwise. Strict Propriety is defined formally as follows:

Strict Propriety: For any element F of any partition F and any two credence functions Cr and

Cr′, Cr(F )s(1, Cr′(F )) + (1−Cr(F ))s(0, Cr′(F )) is uniquely minimized when Cr(F ) = Cr′(F ).

In other words, a scoring rule is strictly proper if, once an agent adopts a certain credence that the actual

world is in a given element F of a partition, that agent cannot achieve a lower expected value for that scoring
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rule by changing their credence in F . Continuity is defined formally as follows:

Continuity: For any element F of any partition F and any credence function Cr, s(1, Cr(F ))

and s(0, Cr(F )) are both continuous functions of Cr(F ).

I take this formal definition to be self-explanatory. As both the Brier and logarithmic scoring rules are sums

of the values of a strictly proper and continuous scoring rule for each element in a partition under a given

probability distribution, my argument in favor of stacking is consistent with Pettigrew’s first premise, and

indeed nothing that I say here should be taken to dispute it.

Instead, I take issue with Pettigrew’s second premise, which is that group credences must respect una-

nimity. Pettigrew’s unanimity constraint can be defined formally as follows:

Unanimity: For any group credence problem (Ω,AΩ, I,F) and any two credence functions Cr∗

and Cr′, if for all i ∈ I, ECri(I(Cr∗,F , ·)) < ECri(I(Cr′,F , ·)), then Cr′ cannot be the group

credence function.

This definition formalizes Pettigrew’s definition of unanimity as the premise that “if, by the lights of every

individual in a group, the expected epistemic value of one credence function is higher than the expected

epistemic value of another credence function, then the latter cannot be the credence function of that group”

(2019, p. 8). Pettigrew then proves that, if inaccuracy is measured by a sum of strictly proper and continuous

scoring rules, then any solution Cr′ to the group credence problem that is not a linear mean of individual

credences will violate unanimity, because there will always exist an alternative group credence Cr∗ that is:

1) a linear mean of the individual credences, and 2) unanimously expected to be more accurate than Cr′.

Further, any solution to the group credence problem that is a linear mean of individual credences will not be

disqualified by the unanimity constraint. Pettigrew takes this to show that agents ought to solve the group

credence problem by taking a linear mean of their individual credences.

In the example discussed in the previous section, the group credence arrived at by stacking does not satisfy

unanimity. Table 2 shows the expected inaccuracy, by both Alphonse and Belinda’s lights, of the maximally

accurate group credence Cr∗M that can be derived by taking a linear mean of their individual credences, as

compared to the expected inaccuracy, by both Alphonse and Belinda’s lights, of the stacking-derived group

credence Cr∗S . Clearly, both Alphonse and Belinda expect Cr∗M to be the more accurate credence, and so

unanimity would rule out Cr∗S as a solution to their group credence problem. Nevertheless, I have shown

in the previous section that the stacking-derived group credence has far greater expected accuracy, by the

lights of the true probability distribution over H, than the maximally accurate credence that can be derived

by taking a linear mean of Alphonse and Belinda’s credences. Thus, it follows that if one believes, as Joyce
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Brier Logarithmic
ECrA

(I(Cr∗M ,H, ·)) .402 1.16
ECrA

(I(Cr∗S ,H, ·)) .499 4.71
ECrB

(I(Cr∗M ,H, ·)) .098 .470
ECrB

(I(Cr∗S ,H, ·)) .110 1.04

Table 2: Expected inaccuracy, by Alphonse and Belinda’s lights, of the maximally accurate group credence
that can be derived by taking a linear mean (Cr∗M ) and the stacking-derived group credence (Cr∗S).

(1998), Goldman (2001), and Pettigrew (2019) all do, that accuracy is the sole source of value for a credence

function, then one ought to abandon unanimity in order to allow for stacking-based solutions to the group

credence problem.

There may be other reasons why groups should solve the group credence problem using a method that is

consistent with unanimity. Unanimity might be a necessary condition for finding a solution that reflects a

commitment to both the claim that the epistemic value of a credence function is its accuracy and the claim

that group credences should be arrived at through a procedure of deliberative democracy. To accept this,

one would have to grant that if all individuals in a group care about accuracy, and all of those individuals

expect that a certain credence will be inaccurate, then the group ought to avoid adopting that credence.

This conditional may be true, but note that its normative consequent cannot follow from its descriptive

antecedent just because the group treats accuracy as the sole virtue of a credence function. This much is

shown by the example in the previous section. However, such a normative implication could be valid if the

group has a background commitment to the idea that group beliefs should, at a minimum, cohere with the

group consensus. Note that accuracy plays no role in this background commitment, which is only about

procedural norms. Thus, Pettigrew is able to give an accuracy-based argument for the claim that group

credences should be derived by taking a linear mean of individual credences only by adopting an assumption

that is not motivated by concerns relating to the accuracy of credence functions.

6 Counterarguments

A key objection to my argument so far proceeds as follows. Applying stacking methods to solve the group

credence problem requires that all agents in a group have access to a shared data set, and have a fairly so-

phisticated mechanism for analyzing that data and returning a hypothesis that describes the data-generating

process. Further, each agent must be able to perform this level of data analysis not just when given the full

data set, but when given each data set that can be generated by removing one of the data points from the full

set. These facts about stacking present two ways of arguing that stacking cannot be used to solve the group

credence problem. First, one could argue that the presupposition that agents could derive a stacking-based
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solution to the group credence problem endows those agents with an unrealistic level of epistemic ability.

Second, one could argue that in many cases, groups of agents will lack access to a shared data set which

they can analyze to produce models and derive credences in future events. Rather, it could be argued, in

many cases agents’ credences are simply opinions that not derived from data analysis.

Regarding the first counterargument, I need only point out that any formal approach to the group credence

problem that assumes that each individual in the group assigns a specific numerical credence to each element

of a partition, and indeed each element of an algebra over a set of possible worlds, already represents agents

in ways that idealize away from actual epistemic life. Real-world agents do not come with well-defined

credences in an exhaustive set of possible events, and attempts to elicit such credences via iterated gambles

are unlikely to be feasible in practice, and may nevertheless be undermined by inconsistent betting behavior

on the part of real-world agents. Further, groups of agents rarely, if ever, possess a mutually agreed-upon

set of possible worlds to serve as the sample space over which an algebra is defined. These facts render the

very framing of the group credence problem an idealization. None of this implies that formal epistemology

cannot be useful in providing normative guidance on how to solve the group credence problem. Rather, just

as scientific models idealize away from their target systems while still providing important insights about the

nature of those systems, formal epistemology can provide insight into epistemic practice while nevertheless

presenting an idealized picture of actual epistemic practice.2 Thus, although stacking introduces further

idealized elements into the group credence problem, the introduction of said elements does not necessarily

imply that stacking is not applicable to the group credence problem.

As for the second counterargument, I hold that when the credences of individuals in a group are mere

opinions, not based on any analysis of underlying data, then we have no reason to suspect that their group

credences should be accurate. To illustrate why this is the case, consider the earlier example in which

Alphonse and Belinda disagree about whether the train to Brussels leaves before or after noon. If neither has

any data regarding the schedule of trains from Brussels to Amsterdam, e.g. neither has looked at a schedule,

neither has taken the train before, neither has any experience with train journeys between European capitals,

etc., then there is no reason why we should expect either of their credences to have any probative value with

respect to the time in which the train is likely to depart. In these kinds of cases, the epistemologist who takes

accuracy to be the sole source of value for group credences has no reason to suspect that any mathematical

operation combining Alphonse and Belinda’s two credences into a single credence will get them closer the

truth. By contrast, if Alphonse and Belinda do have access to some of the data sources described above, then

their process of arriving at a group credence can be represented, with some idealization, as a stacking-based

aggregation of models from which a group credence can be derived.
2This point is developed in considerably more detail in several talks and in work-in-progress by Joe Roussos.
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This discussion reveals what I believe is an important epistemic upshot of stacking-based solutions to the

group credence function. Epistemologists who argue that the sole source of epistemic value for a credence

function is the accuracy of that credence function are what Berker (2013) calls “epistemic consequentialists.”

Just as consequentialists in ethics believe that the moral valence of an action is determined solely by its

consequences, and not an agent’s reasons for performing that action, those who hold up accuracy as the sole

epistemic virtue of a credence function believe that the epistemic valence of a credence function is measured

solely by the extent to which that credence function allows an agent to believe the truth. Importantly, the

agent’s reasons for adopting partial beliefs consistent with that credence function are irrelevant. Berker, for

his part, rejects epistemic consequentialism, insisting that the epistemic value of a belief is determined at

least in part by an agent’s reasons for holding that belief.

What stacking-based approaches to the group credence problem show is that, even if one believes that

accuracy is the sole source of value for a credence function, one should still care whether agents in a group

have reasons for adopting partial beliefs that are consistent with a particular credence function. In the

stacking cases, each agent has a particular analysis of shared data on which they base their credences. Thus,

they have a reason for holding the partial belief that they do. Even if an agent does not have a good reason

for holding their partial beliefs (e.g. they are a poor data analyst), making these reasons explicit to the

group can facilitate stacking, which in turn allows for a more accurate solution the group credence problem

than would have been possible had each individual provided only credences and no reasons justifying their

holding those credences. Thus, having a reason for holding a given credence is better than holding the same

credence for no reason at all, insofar as one is a member of a group that wishes to have an accurate group

credence function. This offers a possible point of conciliation between epistemic consequentialists and their

rivals. Both camps can agree that when each individual agent in a group has a reason for holding partial

beliefs that cohere with a given credence function, the existence of said reasons can improve the value of

the group’s epistemic state. However, they disagree over whether this improvement is directly due to the

existence of said reasons, or due to the increased accuracy of the group credences that these reasons enable.

An additional counterargument against what I have presented here could proceed as follows.3 In the

example that I have given above, Alphonse and Belinda’s learning algorithms produce such inaccurate

models that they must either possess evidence not represented in their mutual data set, or else they must

be irrational in some sense. Let us stipulate that neither Alphonse nor Belinda has any special knowledge

that affects the output of their learning algorithm. So this leaves the possibility that the severe inaccuracy

of Alphonse and Belinda’s learning algorithms is due to putative irrationality on their part. If this is the

case, the counterargument might continue, then the failure of any linear mean to produce an accurate group
3I am grateful to Richard Pettigrew for suggesting this counterargument.
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credence is explained not by any flaw in the method of taking a linear mean of individual group credences,

but is instead explained by Alphonse and Belinda’s irrationality.

In response, I note first that I am wary of equating severe inaccuracy with irrationality. As the inaccuracy

of a prediction comes in degrees, the claim that a prediction can be so inaccurate that it renders the predicting

agent irrational invites a version of the Sorites paradox. If a severely inaccurate prediction ρ1 renders the

predictor irrational, then so too, it stands to reason, does a prediction ρ2 that is only slightly more accurate

than ρ1, and so on until all predictors are declared irrational. I note second that while my previous example

involved severely inaccurate predictors in order to demonstrate clearly the virtues of stacking, stacking can

still outperform credal averaging when predictors are less severely inaccurate. To illustrate, consider the

same example as above, but with Alphonse and Belinda’s models changed to the following, while the true

model MT : h = 5l + ε remains unchanged:

MA : h = 6l + ε (22)

MB : h = 6.1l + ε (23)

Thus, Alphonse and Belinda both over-estimate the number of hares that ought to be present in the region,

given the number of lynx, but their inaccuracy is less egregious than in the earlier example. Suppose further

that Alphonse and Belinda’s leave-α-out vectors are as follows: ~zA = [6, 12, 17, 23], ~zB = [7, 13, 18, 24].

Applying stacking in this case yields the following aggregate model:

MS : h = .81(6l) + .09(6.1l) + ε = 5.45l + ε (24)

If this stacked model is used to generate group credences, then the group’s credence function over the number

of hares observed on a given day will be centered around a mean that is closer to the mean predicted by

the true model than the mean around which either Alphonse or Belinda’s credence functions are centered.

Indeed, both Alphonse and Belinda’s credence functions will be centered around means that are greater

than the mean around which the true probability distribution will be centered. Thus, stacking yields more

a accurate group credence than would be possible under linear averaging, even when the inaccuracy of the

individuals in the group is less severe than in the earlier case.
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7 Conclusion

I have presented the group credence problem, now the subject of considerable attention in formal social

epistemology. I have shown how, when all members of a group are highly inaccurate, any solution to the

group credence problem that relies on taking a mean of each individual in the group’s credence will result

in an inaccurate group credence. I then show how, if we model each agent’s credence function as derived

from a model based on a common data set, we can use stacking techniques to improve the accuracy of the

group’s credence function. In so doing, I reject Pettigrew’s unanimity constraint on any solution to the group

credence problem, arguing that there is no accuracy-based reason for accepting the constraint. I defend this

approach against potential counterarguments, showing that, even if reasons for belief are not in themselves

sources of value for a set of partial beliefs, epistemologists concerned with the accuracy of group credences

should seek to solicit reasons for partial belief from individuals in a group. Even where all individuals in a

group have bad reasons for holding the credences that they do, such an elicitation of reasons can facilitate

stacking, an aggregation method that yields more accurate group credences than averaging techniques in

some cases.

It is worth clarifying point that I do not take stacking to be a panacea for the group credence problem.

In particular, the law-of-large-numbers justification of stacking does not work in cases where exchangeability

is violated (i.e., in cases where data is more likely to appear in a specific order than in some permutation of

that order). Nevertheless, I take myself to have shown above that, in at least some important cases, stacking

is able to generate more accurate group credences than mean-based aggregation methods.
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